(x^2-10x+25)=51

Simple and best practice solution for (x^2-10x+25)=51 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-10x+25)=51 equation:



(x^2-10x+25)=51
We move all terms to the left:
(x^2-10x+25)-(51)=0
We get rid of parentheses
x^2-10x+25-51=0
We add all the numbers together, and all the variables
x^2-10x-26=0
a = 1; b = -10; c = -26;
Δ = b2-4ac
Δ = -102-4·1·(-26)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{51}}{2*1}=\frac{10-2\sqrt{51}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{51}}{2*1}=\frac{10+2\sqrt{51}}{2} $

See similar equations:

| x=10-1/5 | | 2y*y+y-1=0 | | 2y*y-1=0 | | b+18=3b=74 | | Z2+6z+8=0 | | 2x*x+3x-6=0 | | -70=(-5X)-4(3x-8) | | 10x^2-19=5 | | 9=11/4p-1.5 | | x+24+2x=-15-2-21 | | x+-21.79=25+43.58 | | 4x-35=-2x+79 | | 2/3x-8=2+1/4x | | 6+2(x+1/4)=8 | | 3^5x=24 | | x/80=3/100 | | 21x^2-10+x=0 | | 1.3=4y+20.1 | | 2+x/2=28 | | x=3.5+24 | | 4u+28=7(u+1) | | -7x+4=-104+5 | | x=(0.2587/0.0143) | | (3^x+4)=(2^5-3x) | | -x+3x=0 | | -2x-87=8x+73 | | -4(y-8)=-6y+14 | | 5(2^x)=5/16 | | 10x=5×(3x+6) | | 10x=5×(3+x) | | -5x=-75- | | 3x=10,1+9,9-2x |

Equations solver categories